Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.045
Filtrar
1.
Oncol Res ; 32(4): 785-797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560574

RESUMEN

Cytochromes P450 (CYPs) play a prominent role in catalyzing phase I xenobiotic biotransformation and account for about 75% of the total metabolism of commercially available drugs, including chemotherapeutics. The gene expression and enzyme activity of CYPs are variable between individuals, which subsequently leads to different patterns of susceptibility to carcinogenesis by genotoxic xenobiotics, as well as differences in the efficacy and toxicity of clinically used drugs. This research aimed to examine the presence of the CYP2B6*9 polymorphism and its possible association with the incidence of B-CLL in Egyptian patients, as well as the clinical outcome after receiving cyclophosphamide chemotherapy. DNA was isolated from whole blood samples of 100 de novo B-CLL cases and also from 100 sex- and age-matched healthy individuals. The presence of the CYP2B6*9 (G516T) polymorphism was examined by PCR-based allele specific amplification (ASA). Patients were further indicated for receiving chemotherapy, and then they were followed up. The CYP2B6*9 variant indicated a statistically significant higher risk of B-CLL under different genetic models, comprising allelic (T-allele vs. G-allele, OR = 4.8, p < 0.001) and dominant (GT + TT vs. GG, OR = 5.4, p < 0.001) models. Following cyclophosphamide chemotherapy, we found that the patients with variant genotypes (GT + TT) were less likely to achieve remission compared to those with the wild-type genotype (GG), with a response percentage of (37.5% vs. 83%, respectively). In conclusion, our findings showed that the CYP2B6*9 (G516T) polymorphism is associated with B-CLL susceptibility among Egyptian patients. This variant greatly affected the clinical outcome and can serve as a good therapeutic marker in predicting response to cyclophosphamide treatment.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Citocromo P-450 CYP2B6/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/epidemiología , Leucemia Linfocítica Crónica de Células B/genética , Incidencia , Egipto/epidemiología , Sistema Enzimático del Citocromo P-450/genética , Genotipo , Ciclofosfamida/efectos adversos
2.
Plant Cell Rep ; 43(5): 122, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642121

RESUMEN

KEY MESSAGE: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.


Asunto(s)
Lagerstroemia , Transcriptoma , Triterpenos , Transcriptoma/genética , Lagerstroemia/genética , Lagerstroemia/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica
3.
Biochemistry ; 63(8): 1026-1037, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564530

RESUMEN

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11ß-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11ß-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.


Asunto(s)
Aldosterona , Esteroide 11-beta-Hidroxilasa , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Corticosterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Catálisis , Cinética
4.
Sci Rep ; 14(1): 7922, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575662

RESUMEN

Breast cancer (BC) is the most prevalent malignancy in women globally. At time of diagnosis, premenopausal BC is considered more aggressive and harder to treat than postmenopausal cases. Cytochrome P450 (CYP) enzymes are responsible for phase I of estrogen metabolism and thus, they are prominently involved in the pathogenesis of BC. Moreover, CYP subfamily 2C and 3A play a pivotal role in the metabolism of taxane anticancer agents. To understand genetic risk factors that may have a role in pre-menopausal BC we studied the genotypic variants of CYP2C8, rs11572080 and CYP3A4, rs2740574 in female BC patients on taxane-based therapy and their association with menopausal status. Our study comprised 105 female patients with histologically proven BC on paclitaxel-therapy. They were stratified into pre-menopausal (n = 52, 49.5%) and post-menopausal (n = 53, 50.5%) groups. Genotyping was done using TaqMan assays and employed on Quantstudio 12 K flex real-time platform. Significant increased frequencies of rs11572080 heterozygous CT genotype and variant T allele were established in pre-menopausal group compared to post-menopausal group (p = 0.023, 0.01, respectively). Moreover, logistic regression analysis revealed a significant association between rs11572080 CT genotype and premenopausal BC. However, regarding rs2740574, no significant differences in genotypes and allele frequencies between both groups were detected. We reported a significant association between CYP2C8 genotypic variants and premenopausal BC risk in Egyptian females. Further studies on larger sample sizes are still needed to evaluate its importance in early prediction of BC in young women and its effect on treatment outcome.


Asunto(s)
Neoplasias de la Mama , Paclitaxel , Humanos , Femenino , Paclitaxel/efectos adversos , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP3A/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Genotipo , Sistema Enzimático del Citocromo P-450/genética
5.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582590

RESUMEN

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Asunto(s)
4-Cloro-7-nitrobenzofurazano , Acetil-CoA Carboxilasa , Butanos , Herbicidas , Nitrilos , Oxazoles , Propionatos , Acetil-CoA Carboxilasa/metabolismo , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Herbicidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Mutación , Resistencia a los Herbicidas/genética
6.
Mol Biol Rep ; 51(1): 526, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632160

RESUMEN

BACKGROUND: Vitamin D deficiency is prevalent among the Indonesian population, particularly in individuals diagnosed with leukemia-lymphoma. The regulation of vitamin D metabolism is influenced by the expression of several enzymes, such as CYP2R1, CYP24A1, and the vitamin D receptor (VDR). This study aimed to scrutinize the gene expression profiles in both mRNA and protein levels of VDR, CYP2R1, and CYP24A1 in leukemia and lymphoma patients. METHOD: The research was a cross-sectional study conducted at Cipto Mangunkusumo Hospital (RSCM) in Jakarta, Indonesia. The study included a total of 45 patients aged over 18 years old who have received a diagnosis of lymphoma or leukemia. Vitamin D status was measured by examining serum 25 (OH) D levels. The analysis of VDR, CYP2R1, and CYP24A1 mRNA expression utilized the qRT-PCR method, while protein levels were measured through the ELISA method. CONCLUSION: The study revealed a noteworthy difference in VDR protein levels between men and women. The highest mean CYP24A1 protein levels were observed in the age group > 60 years. This study found a significant, moderately positive correlation between VDR protein levels and CYP24A1 protein levels in the male and vitamin D sufficiency groups. In addition, a significant positive correlation was found between VDR mRNA levels and CYP2R1 mRNA levels, VDR mRNA levels and CYP2R1 mRNA levels, and CYP2R1 mRNA levels and CYP24A1 mRNA levels. However, the expression of these genes does not correlate with the protein levels of its mRNA translation products in blood circulation.


Asunto(s)
Leucemia , Linfoma , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Receptores de Calcitriol/genética , Vitamina D3 24-Hidroxilasa/genética , Estudios Transversales , Vitamina D , Sistema Enzimático del Citocromo P-450/genética , Perfilación de la Expresión Génica , ARN Mensajero/metabolismo , Familia 2 del Citocromo P450/genética , Colestanotriol 26-Monooxigenasa/genética
7.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628055

RESUMEN

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Asunto(s)
Escarabajos , Proteínas de Insectos , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Escarabajos/genética , Larva/genética , Larva/metabolismo , Insectos/metabolismo , Metamorfosis Biológica , Ecdisterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Interferencia de ARN , Pupa/genética , Pupa/metabolismo
9.
Cell Biol Toxicol ; 40(1): 18, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528259

RESUMEN

The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.


Asunto(s)
Citocromo P-450 CYP1A1 , Xenobióticos , Bovinos , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistemas CRISPR-Cas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Línea Celular
10.
Drug Saf ; 47(4): 355-363, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460070

RESUMEN

BACKGROUND: Pulmonary toxicity has been associated with drug use. This is often not recognized in clinical practice, and underestimated. OBJECTIVE: We aimed to establish whether polymorphisms in certain genes corresponding with a metabolic pathway of drug(s) used are associated with pulmonary toxicity in patients with suspected drug-induced interstitial lung disease (DI-ILD). METHODS: This retrospective observational study explored genetic variations in three clinically relevant cytochrome P450 (CYP) iso-enzymes (i.e., CYP2D6, CYP2C9, and CYP2C19) in a group of patients with a fibroticinterstitial lung disease, either non-specific interstitial pneumonia (n = 211) or idiopathic pulmonary fibrosis (n = 256), with a suspected drug-induced origin. RESULTS: Of the 467 patients, 79.0% showed one or more polymorphisms in the tested genes accompanied by the use of drug(s) metabolized by a corresponding affected metabolic pathway (60.0% poor metabolizers and/or using two or more drugs [likely DI-ILD], 37.5% using three or more [highly likely DI-ILD]). Most commonly used drugs were statins (63.1%) with a predominance among men (69.4 vs 47.1%, p < 0.0001). Nitrofurantoin, not metabolized by the tested pathways, was prescribed more frequently among women (51.9 vs 4.5%, p < 0.00001). CONCLUSIONS: In our cohort with suspected DI-ILD, 79% carried one or more genetic variants accompanied by the use of drugs metabolized by a corresponding affected pathway. In 60%, the diagnosis of DI-ILD was likely, whereas in 37.5%, it was highly likely, based on CYP analyses. This study underlines the importance of considering both drug use and genetic make-up as a possible cause, or at least a contributing factor, in the development and/or progression of fibrotic lung diseases. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00267800, registered in 2005.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Masculino , Humanos , Femenino , Enfermedades Pulmonares Intersticiales/inducido químicamente , Enfermedades Pulmonares Intersticiales/genética , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Sistema Enzimático del Citocromo P-450/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/complicaciones , Medición de Riesgo
11.
Physiol Plant ; 176(2): e14244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38480467

RESUMEN

Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxygenases, catalyze hydroxylation reactions crucial for specialized plant metabolic pathways, including detoxification and phytohormone production; the CYPome consists of one enormous superfamily that is divided into clans and families. Their evolutionary history speaks of high substrate promiscuity; radiation and functional diversification have yielded numerous CYP families. To understand the evolutionary relationships within the CYPs, we employed sequence similarity network analyses. We recovered distinct clusters representing different CYP families, reflecting their diversified sequences that we link to the prediction of functionalities. Hierarchical clustering and phylogenetic analysis further elucidated relationships between CYP clans, uncovering their shared deep evolutionary history. We explored the distribution and diversification of CYP subfamilies across plant and algal lineages, uncovering novel candidates and providing insights into the evolution of these enzyme families. This identified unexpected relationships between CYP families, such as the link between CYP82 and CYP74, shedding light on their roles in plant defense signaling pathways. Our approach provides a methodology that brings insights into the emergence of new functions within the CYP450 family, contributing to the evolutionary history of plants and algae. These insights can be further validated and implemented via experimental setups under various external conditions.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Plantas , Archaea/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo
12.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452087

RESUMEN

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Asunto(s)
Brasinoesteroides , Grano Comestible , Oryza , Proteínas de Plantas , Brasinoesteroides/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Genes (Basel) ; 15(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540329

RESUMEN

Kadsura coccinea is a medicinal plant from the Schisandraceae family that is native to China and has great pharmacological potential due to its lignans. However, there are significant knowledge gaps regarding the genetic and molecular mechanisms of lignans. We used transcriptome sequencing technology to analyze root, stem, and leaf samples, focusing on the identification and phylogenetic analysis of Cytochrome P450 (CYP) genes. High-quality data containing 158,385 transcripts and 68,978 unigenes were obtained. In addition, 36,293 unigenes in at least one database, and 23,335 across five databases (Nr, KEGG, KOG, TrEMBL, and SwissProt) were successfully annotated. The KEGG pathway classification and annotation of these unigenes identified 10,825 categorized into major metabolic pathways, notably phenylpropanoid biosynthesis, which is essential for lignan synthesis. A key focus was the identification and phylogenetic analysis of 233 Cytochrome P450 (CYP) genes, revealing their distribution across 38 families in eight clans, with roots showing specific CYP gene expression patterns indicative of their role in lignan biosynthesis. Sequence alignment identified 22 homologous single genes of these CYPs, with 6 homologous genes of CYP719As and 1 of CYP81Qs highly expressed in roots. Our study significantly advances the understanding of the biosynthesis of dibenzocyclooctadiene lignans, offering valuable insights for future pharmacological research and development.


Asunto(s)
Kadsura , Lignanos , Humanos , Transcriptoma/genética , Filogenia , Perfilación de la Expresión Génica , Sistema Enzimático del Citocromo P-450/genética , Lignanos/farmacología
14.
Drug Metab Pharmacokinet ; 55: 101002, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452615

RESUMEN

Drug-metabolizing enzymes are important in drug development and therapy, but have not been fully identified and characterized in many species, lines, and breeds. Liver transcriptomic data were analyzed for phase I cytochromes P450, flavin-containing monooxygenases, and carboxylesterases and phase II UDP-glucuronosyltransferases, sulfotransferases, and glutathione S-transferases. Comparisons with a variety of species (humans, rhesus macaques, African green monkeys, baboons, common marmosets, cattle, sheep, pigs, cats, dogs, rabbits, tree shrews, rats, mice, and chickens) revealed both general similarities and differences in the transcript abundances of drug-metabolizing enzymes. Similarly, Beagle and Shiba dogs were examined by next-generation sequencing (RNA-seq). Consequently, no substantial differences in transcript abundance were noted in different breeds of pigs and dogs and in different lines of mice and rats. Therefore, the expression profiles of hepatic drug-metabolizing enzyme transcripts appear to be similar in Shiba and Beagle dogs and pig breeds and the rat and mouse lines analyzed, although some differences were found in other species.


Asunto(s)
Pollos , Sistema Enzimático del Citocromo P-450 , Humanos , Animales , Perros , Ratas , Porcinos/genética , Conejos , Bovinos , Ovinos , Chlorocebus aethiops , Macaca mulatta/metabolismo , Pollos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Especificidad de la Especie
15.
J Hazard Mater ; 469: 134056, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522208

RESUMEN

The extensive use of antidiabetic drugs (ADDs) and their detection in high concentrations in the environment have been extensively documented. However, the mechanism of ADDs dissipation in aquatic environments is still not well understood. This study thoroughly investigates the dissipation behavior of ADDs and the underlying mechanisms in the aerobic activated sludge system. The results indicate that the removal efficiencies of ADDs range from 3.98% to 100% within 48 h, largely due to the biodegradation process. Additionally, the gene expression of cytochrome P450 (CYP450) is shown to be significantly upregulated in most ADDs-polluted samples (P < 0.05), indicating the vital role of CYP450 enzymes in the biodegradation of ADDs. Enzyme inhibition experiments validated this hypothesis. Moreover, molecular docking and simulation results indicate that a strong correlation between the biodegradation of ADDs and the interactions between ADDs and CYP450 (Ebinding). The differences in dissipation behavior among the tested ADDs are possibly due to their electrophilic characteristics. Overall, this study makes the initial contribution to a more profound comprehension of the crucial function of CYP450 enzymes in the dissipation behavior of ADDs in a typical aquatic environment.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Biodegradación Ambiental
16.
J Basic Clin Physiol Pharmacol ; 35(1-2): 85-91, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38468541

RESUMEN

OBJECTIVES: The principal motive of this study is to explore the influence maternal separation (MS) exhibits on the mRNA expression of major drug metabolizing-cyp450s in parallel with the assessment of pathological changes that can be induced by MS in the livers of experimental mice. METHODS: Eighteen Balb/c mouse pups, comprising of both males and females, were separated from their mothers after birth. Following a six-week period during when the pups became adults, the mice were sacrificed and their livers were isolated for analysis of weight, pathohistological alterations, and the mRNA expression of drug metabolizing cyp450 genes: cyp1a1, cyp3a11, cyp2d9, and cyp2c29. RESULTS: The study demonstrated that MS markedly downregulated (p<0.05) the mRNA expression of all tested drug-metabolizing cyp450s in livers of female and male mice. Furthermore, the mRNA levels of major drug-metabolizing cyp450s were notably lower (p<0.05) in livers of female MS mice as compared with male MS mice. It was found that values of the total body weight and liver weight of MS mice did not vary significantly (p>0.05) from those of the control groups. Additionally, histological examination revealed that the hepatic tissue of MS mice was normal, similar to that of the control mice. CONCLUSIONS: In summary, MS downregulates the gene expression of major hepatic drug-metabolizing cyp450s without inducing pathological alterations in the livers of mice. These findings provide an explanation for the heterogeneity in pharmacokinetics and drug response of patients with early life stress.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Privación Materna , Humanos , Adulto , Masculino , Ratones , Femenino , Animales , Sistema Enzimático del Citocromo P-450/genética , Hígado/metabolismo , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo , Expresión Génica
17.
BMC Med Genomics ; 17(1): 66, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438909

RESUMEN

BACKGROUND: Coronary heart disease (CHD) has become a worldwide public health problem. Genetic factors are considered important risk factors for CHD. The aim of this study was to explore the correlation between CYP4A22 gene polymorphism and CHD susceptibility in the Chinese Han population. METHODS: We used SNPStats online software to complete the association analysis among 962 volunteers. False-positive report probability analysis was used to confirm whether a positive result is noteworthy. Haploview software and SNPStats were used for haplotype analysis and linkage disequilibrium. Multi-factor dimensionality reduction was applied to evaluate the interaction between candidate SNPs. RESULTS: In overall and some stratified analyses (male, age ≤ 60 years or CHD patients complicated with hypertension), CYP4A22-rs12564525 (overall, OR = 0.83, p-value is 0.042) and CYP4A22-rs2056900 (overall, OR = 1.22, p-value is 0.032) were associated with the risk of CHD. CYP4A22-4926581 was associated with increased CHD risk only in some stratified analyses. FPRP indicated that all positive results in our study are noteworthy findings. In addition, MDR showed that the single-locus model composed of rs2056900 is the best model for predicting susceptibility to CHD. CONCLUSION: There are significant associations between susceptibility to CHD and CYP4A22 rs12564525, and rs2056900.


Asunto(s)
Enfermedad Coronaria , Hipertensión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pueblo Asiatico/genética , Enfermedad Coronaria/genética , Citocromo P-450 CYP4A/genética , Sistema Enzimático del Citocromo P-450/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo
18.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547266

RESUMEN

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hordeum , Alcaloides Indólicos , Familia de Multigenes , Hordeum/genética , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Fitomejoramiento , Oxidación-Reducción , Triptófano/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Edición Génica , Genes de Plantas
19.
Asian Pac J Cancer Prev ; 25(3): 885-892, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546071

RESUMEN

OBJECTIVE: Gastric cancer (GC) is one of the most common malignancies and ranks third in terms of cancer-related mortality. This study aims to identify the hub genes and potential mechanisms in GC using a bioinformatics approach. METHODS: Microarray data GSE54129, GSE79973, GSE55696 were extracted from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) was identified using Benjamini-Hochberg method in the limma package. GO and KEGG pathway enrichment analyses of the DEGs were conducted. Furthermore, protein-protein interaction network was constructed the STRING platform, and the hub genes were discovered using Maximal Clique Centrality method via cytoHubba. The predictive significance of hub genes was evaluated through GSE15459 dataset. RESULTS: A total of 73 genes was identified as DEGs in GC. Volcano plots and heatmaps of DEGs were visualized. Functional enrichment analysis revealed that the genes were mostly enriched in response to xenobiotic stimulus, digestion, cellular hormone metabolic process, extracellular matrix structural constituent, calcium-dependent cysteine-type endopeptidase activity, aromatase activity, apical part of cell, basal part of cell, and apical plasma membrane. Regarding KEGG pathway-enrichment, the genes were mainly involved in Drug metabolism-cytochrome P450, Retinol metabolism, Chemical carcinogenesis-DNA adducts, Gastric acid secretion, and Metabolism of xenobiotics by cytochrome P450. By combining the results of Cytohubba, the top five intersecting genes identified were SPP1, INHBA, MMP7, THBS2 and FAP. Kapplan-Meier analysis results showed that these 5 hub genes were highly related to the overall survival of patients. CONCLUSION: SPP1, INHBA, MMP7, THBS2, and FAP were identified as prospective biomarkers and therapeutic targets for GC that might be utilized for prognostic evaluation and scheme selection.


Asunto(s)
Neoplasias Gástricas , Transcriptoma , Humanos , Neoplasias Gástricas/patología , Metaloproteinasa 7 de la Matriz/genética , Metaloproteinasa 7 de la Matriz/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Sistema Enzimático del Citocromo P-450/genética
20.
Drug Metab Dispos ; 52(5): 455-466, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38467432

RESUMEN

Bupropion is used for treating depression, obesity, and seasonal affective disorder, and for smoking cessation. Bupropion is commonly prescribed, but has complex pharmacokinetics and interindividual variability in metabolism and bioactivation may influence therapeutic response, tolerability, and safety. Bupropion is extensively and stereoselectively metabolized, the metabolites are pharmacologically active, and allelic variation in cytochrome P450 (CYP) 2B6 affects clinical hydroxylation of single-dose bupropion. Genetic effects on stereoselective disposition of steady-state bupropion are not known. In this preplanned secondary analysis of a prospective, randomized, double-blinded, crossover study which compared brand and generic bupropion XL 300 mg drug products, we measured steady-state enantiomeric plasma and urine parent bupropion and primary and secondary metabolite concentrations. This investigation evaluated the influence of genetic polymorphisms in CYP2B6, CYP2C19, and P450 oxidoreductase on the disposition of Valeant Pharmaceuticals Wellbutrin brand bupropion in 67 participants with major depressive disorder. We found that hydroxylation of both bupropion enantiomers was lower in carriers of the CYP2B6*6 allele and in carriers of the CYP2B6 516G>T variant, with correspondingly greater bupropion and lesser hydroxybupropion plasma concentrations. Hydroxylation was 25-50% lower in CYP2B6*6 carriers and one-third to one-half less in 516T carriers. Hydroxylation of the bupropion enantiomers was comparably affected by CYP2B6 variants. CYP2C19 polymorphisms did not influence bupropion plasma concentrations or hydroxybupropion formation but did influence the minor pathway of 4'-hydroxylation of bupropion and primary metabolites. P450 oxidoreductase variants did not influence bupropion disposition. Results show that CYP2B6 genetic variants affect steady-state metabolism and bioactivation of Valeant brand bupropion, which may influence therapeutic outcomes. SIGNIFICANCE STATEMENT: Bupropion, used for depression, obesity, and smoking cessation, undergoes metabolic bioactivation, with incompletely elucidated interindividual variability. We evaluated cytochrome P450 (CYP) 2B6, CYP2C19 and P450 oxidoreductase genetic variants and steady-state bupropion and metabolite enantiomers disposition. Both enantiomers hydroxylation was lower in CYP2B6*6 and CYP2B6 516G>T carriers, with greater bupropion and lesser hydroxybupropion plasma concentrations. CYP2C19 polymorphisms did not affect bupropion or hydroxybupropion but did influence minor 4'-hydroxylation of bupropion and primary metabolites. CYP2B6 variants affect steady-state bupropion bioactivation, which may influence therapeutic outcomes.


Asunto(s)
Bupropión , Bupropión/análogos & derivados , Trastorno Depresivo Mayor , Humanos , Bupropión/farmacocinética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C19 , Farmacogenética , Estudios Cruzados , Estudios Prospectivos , Sistema Enzimático del Citocromo P-450/genética , Obesidad , Oxidorreductasas N-Desmetilantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...